18.1 Sequences of Transformations

Essential Question: What happens when you apply more than one transformation to a figure?

Resource

 Locker
Explore Combining Rotations or Reflections

A transformation is a function that takes points on the plane and maps them to other points on the plane. Transformations can be applied one after the other in a sequence where you use the image of the first transformation as the preimage for the next transformation.

Find the image for each sequence of transformations.
(A) Using geometry software, draw a triangle and label the vertices A, B, and C. Then draw a point outside the triangle and label it P.

Rotate $\triangle A B C 30^{\circ}$ around point P and label the image as $\triangle A^{\prime} B^{\prime} C^{\prime}$. Then rotate $\triangle A^{\prime} B^{\prime} C^{\prime} 45^{\circ}$ around point P and label the image as $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$. Sketch your result.

(B) Make a conjecture regarding a single rotation that will map $\triangle A B C$ to $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.

Check your conjecture, and describe what you did.
(C) Using geometry software, draw a triangle and label the vertices D, E, and F. Then draw two intersecting lines and label them j and k.

Reflect $\triangle D E F$ across line j and label the image as $\triangle D^{\prime} E^{\prime} F^{\prime}$. Then reflect $\triangle D^{\prime} E^{\prime} F^{\prime}$ across line k and label the image as $\triangle D^{\prime \prime} E^{\prime \prime} F^{\prime \prime}$. Sketch your result.

(D) Consider the relationship between $\triangle D E F$ and $\triangle D^{\prime \prime} E^{\prime \prime} F^{\prime \prime}$. Describe the single t ransformation that maps $\triangle D E F$ to $\triangle D^{\prime \prime} E^{\prime \prime} F^{\prime \prime}$. How can you check that you are correct?

Reflect

1. Repeat Step A using other angle measures. Make a conjecture about what single transformation will describe a sequence of two rotations about the same center.
\qquad
\qquad
2. Make a conjecture about what single transformation will describe a sequence of three rotations about the same center.
\qquad
\qquad
3. Discussion Repeat Step C, but make lines j and k parallel instead of intersecting. Make a conjecture about what single transformation will now map $\triangle D E F$ to $\triangle D^{\prime \prime} E^{\prime \prime} F^{\prime \prime}$. Check your conjecture and describe what you did.
\qquad
\qquad
\qquad

Explain 1 Combining Rigid Transformations

In the Explore, you saw that sometimes you can use a single transformation to describe the result of applying a sequence of two transformations. Now you will apply sequences of rigid transformations that cannot be described by a single transformation.

Example 1 Draw the image of $\triangle A B C$ after the given combination of transformations.
(A) Reflection over line ℓ then translation along \vec{v}

Step 1 Draw the image of $\triangle A B C$ after a reflection across line ℓ. Label the image $\triangle A^{\prime} B^{\prime} C^{\prime}$.

Step 2 Translate $\triangle A^{\prime} B^{\prime} C^{\prime}$ along $\stackrel{\rightharpoonup}{v}$. Label this image $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.

(B) 180° rotation around point P, then translation along \vec{v}, then reflection across line ℓ

Apply the rotation. Label the image $\triangle A^{\prime} B^{\prime} C^{\prime}$.
Apply the translation to $\triangle A^{\prime} B^{\prime} C^{\prime}$. Label the image $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.
Apply the reflection to $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$. Label the image $\triangle A^{\prime \prime \prime} B^{\prime \prime \prime} C^{\prime \prime \prime}$.

Reflect

4. Are the images you drew for each example the same size and shape as the given preimage?

In what ways do rigid transformations change the preimage?
\qquad
\qquad
\qquad
5. Does the order in which you apply the transformations make a difference? Test your conjecture by performing the transformations in Part B in a different order.
\qquad
\qquad
\qquad
6. For Part B, describe a sequence of transformations that will take $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ back to the preimage.
\qquad
\qquad
\qquad

Your Turn

Draw the image of the triangle after the given combination of transformations.
7. Reflection across ℓ then 90° rotation around point P

8. Translation along \vec{v} then 180° rotation around point P then translation along \vec{u}

Explain 2 Combining Nonrigid Transformations

Example 2 Draw the image of the figure in the plane after the given combination of transformations.
(A) $(x, y) \rightarrow\left(\frac{3}{2} x, \frac{3}{2} y\right) \rightarrow(-x, y) \rightarrow(x+1, y-2)$

1. The first transformation is a dilation by a factor of $\frac{3}{2}$. Apply the dilation. Label the image $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.
2. Apply the reflection of $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ across the y-axis. Label this image $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$.
3. Apply the translation of $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$. Label this image $A^{\prime \prime \prime} B^{\prime \prime \prime} C^{\prime \prime \prime} D^{\prime \prime \prime}$.

(B) $(x, y) \rightarrow(3 x, y) \rightarrow\left(\frac{1}{2} x,-\frac{1}{2} y\right)$
4. The first transformation is a [horizontal/vertical] stretch by a factor of \qquad .
Apply the stretch. Label the image \qquad
5. The second transformation is a dilation by a factor of \qquad combined with a reflection.

Apply the transformation to \qquad Label the image \qquad

Reflect

9. If you dilated a figure by a factor of 2 , what transformation could you use to return the figure back to its preimage? If you dilated a figure by a factor of 2 and then translated it right 2 units, write a sequence of transformations to return the figure back to its preimage.
\qquad
\qquad
10. A student is asked to reflect a figure across the y-axis and then vertically stretch the figure by a factor of 2 . Describe the effect on the coordinates. Then write one transformation using coordinate notation that combines these two transformations into one.

Draw the image of the figure in the plane after the given combination of transformations.
11. $(x, y) \rightarrow(x-1, y-1) \rightarrow(3 x, y) \rightarrow(-x,-y)$
12. $(x, y) \rightarrow\left(\frac{3}{2} x,-2 y\right) \rightarrow(x-5, y+4)$

Explain 3 Predicting the Effect of Transformations

Example 3 Predict the result of applying the sequence of transformations to the given figure.
(A) $\triangle L M N$ is translated along the vector $\langle-2,3\rangle$, reflected across the y-axis, and then reflected across the x-axis.

Predict the effect of the first transformation: A translation along the vector $\langle-2,3\rangle$ will move the figure left 2 units and up 3 units. Since the given triangle is in Quadrant II, the translation will move
 it further from the x-and y-axes. It will remain in Quadrant II.

Predict the effect of the second transformation: Since the triangle is in Quadrant II, a reflection across the y-axis will change the orientation and move the triangle into Quadrant I.

Predict the effect of the third transformation: A reflection across the x-axis will again change the orientation and move the triangle into Quadrant IV. The two reflections are the equivalent of rotating the figure 180° about the origin.

The final result will be a triangle the same shape and size as $\triangle L M N$ in Quadrant IV. It has been rotated 180° about the origin and is farther from the axes than the preimage.
(B) Square $H I J K$ is rotated 90° clockwise about the origin and then dilated by a factor of 2 , which maps $(x, y) \rightarrow(2 x, 2 y)$.

Predict the effect of the first transformation: \qquad
\qquad
\qquad
\qquad
Predict the effect of the second transformation: \qquad

\qquad

The final result will be \qquad
\qquad

Your Turn

Predict the result of applying the sequence of transformations to the given figure.
13. Rectangle $G H J K$ is reflected across the y-axis and translated along the vector $\langle 5,4\rangle$.

14. $\triangle T U V$ is horizontally stretched by a factor of $\frac{3}{2}$, which maps $(x, y) \rightarrow\left(\frac{3}{2} x, y\right)$, and then translated along the vector $\langle 2,1\rangle$.

Elaborate

15. Discussion How many different sequences of rigid transformations do you think you can find to take a preimage back onto itself? Explain your reasoning.
\qquad
\qquad
\qquad \longrightarrow
\qquad
\qquad
\qquad
16. Is there a sequence of a rotation and a dilation that will result in an image that is the same size and position as the preimage? Explain your reasoning.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
17. Essential Question Check-In In a sequence of transformations, the order of the transformations can affect the final image. Describe a sequence of transformations where the order does not matter. Describe a sequence of transformations where the order does matter.

Draw and label the final image of $\triangle A B C$ after the given sequence

- Online Homework
- Hints and Help of transformations.
- Extra Practice

1. Reflect $\triangle A B C$ over the y-axis and then translate by $\langle 2,-3\rangle$.

2. Rotate $\triangle A B C 90$ degrees clockwise about the origin and then reflect over the x-axis.

3. Translate $\triangle A B C$ by $\langle 4,4\rangle$, rotate 90 degrees counterclockwise around A, and reflect over the y-axis.

4. Reflect $\triangle A B C$ over the x-axis, translate by $\langle-3,-1\rangle$, and rotate 180 degrees around the origin.

Draw and label the final image of $\triangle A B C$ after the given sequence of transformations.
5. $(x, y) \rightarrow\left(x, \frac{1}{3} y\right) \rightarrow(-2 x,-2 y)$
6. $(x, y) \rightarrow\left(-\frac{3}{2} x, \frac{2}{3} y\right) \rightarrow(x+6, y-4) \rightarrow\left(\frac{2}{3} x,-\frac{3}{2} y\right)$

Predict the result of applying the sequence of transformations to the given figure.

7. $\triangle A B C$ is translated along the vector $\langle-3,-1\rangle$, reflected across the x-axis, and then reflected across the y-axis.

8. $\triangle A B C$ is translated along the vector $\langle-1,-3\rangle$, rotated 180° about the origin, and then dilated by a factor of 2 .

In Exercises 9-12, use the diagram. Fill in the blank with the letter of the correct image described.
9. \qquad is the result of the sequence: G reflected over a vertical line and then a horizontal line.
10. \qquad is the result of the sequence: D rotated 90° clockwise around one of its vertices and then reflected over a horizontal line.
11. \qquad is the result of the sequence: E translated and then rotated 90° counterclockwise.
12. \qquad is the result of the sequence: D rotated 90° counterclockwise and then translated.

Choose the correct word to complete a true statement.
13. A combination of two rigid transformations on a preimage will always/sometimes/never produce the same image when taken in a different order.
15. A sequence of a translation and a reflection always/sometimes/never has a point that does not change position.
17. A sequence of rigid transformations will always/sometimes/never result in an image that is the same size and orientation as the preimage.
14. A double rotation can always/sometimes/never be written as a single rotation.
16. A sequence of a reflection across the x-axis and then a reflection across the y-axis always/sometimes/never results in a 180° rotation of the preimage.
18. A sequence of a rotation and a dilation will always/sometimes/never result in an image that is the same size and orientation as the preimage.
19. $\triangle Q R S$ is the image of $\triangle L M N$ under a sequence of transformations. Can each of the following sequences be used to create the image, $\triangle Q R S$, from the preimage, $\triangle L M N$? Select yes or no.
a. Reflect across the y-axis and then
\bigcirc Yes \bigcirc No translate along the vector $\langle 0,-4\rangle$.
b. Translate along the vector $\langle 0,-4\rangle$ and then reflect across the y-axis.
c. Rotate 90° clockwise about the \bigcirc Yes \bigcirc No \bigcirc Yes \bigcirc No origin, reflect across the x-axis, and then rotate 90° counterclockwise about the origin.

d. Rotate 180° about the origin, reflect across the x-axis, and then translate along the vector $\langle 0,-4\rangle$.
20. A teacher gave students this puzzle: "I had a triangle with vertex A at $(1,4)$ and vertex B at $(3,2)$. After two rigid transformations, I had the image shown. Describe and show a sequence of transformations that will give this image from the preimage."

H.O.T. Focus on Higher Order Thinking

21. Analyze Relationships What two transformations would you apply to $\triangle A B C$ to get $\triangle D E F$? How could you express these transformations with a single mapping rule in the form of $(x, y) \rightarrow(?, ?) ?$

22. Multi-Step Muralists will often make a scale drawing of an art piece before creating the large finished version. A muralist has sketched an art piece on a sheet of paper that is 3 feet by 4 feet.
a. If the final mural will be 39 feet by 52 feet, what is the scale factor for this dilation?

b. The owner of the wall has decided to only give permission to paint on the lower half of the wall. Can the muralist simply use the transformation $(x, y) \rightarrow\left(x, \frac{1}{2} y\right)$ in addition to the scale factor to alter the sketch for use in the allowed space? Explain.
23. Communicate Mathematical Ideas As a graded class activity, your teacher asks your class to reflect a triangle across the y-axis and then across the x-axis. Your classmate gets upset because he reversed the order of these reflections and thinks he will have to start over. What can you say to your classmate to help him?

Lesson Performance Task

The photograph shows an actual snowflake. Draw a detailed sketch of the "arm" of the snowflake located at the top left of the photo (10:00 on a clock face). Describe in as much detail as you can any translations, reflections, or rotations that you see.

Then describe how the entire snowflake is constructed, based on what you found in the design of one arm.

18.2 Proving Figures are Congruent Using Rigid Motions

Essential Question: How can you determine whether two figures are congruent?

Explore Confirming Congruence

Two plane figures are congruent if and only if one can be obtained from the other by a sequence of rigid motions (that is, by a sequence of reflections, translations, and/or rotations).

A landscape architect uses a grid to design the landscape around a mall. Use tracing paper to confirm that the landscape elements are congruent.
(A) Trace planter $A B C D$. Describe a transformation you can use to move the tracing paper so that planter $A B C D$ is mapped onto planter $E F G H$. What does this confirm about the planters?

(B) Trace pools $J K L M$ and $N P Q R$. Fold the paper so that pool $J K L M$ is mapped onto pool $N P Q R$. Describe the transformation. What does this confirm about the pools?
\qquad
\qquad
\qquad

(C) Determine whether the lawns are congruent. Is there a rigid transformation that maps $\triangle L M N$ to $\triangle D E F$? What does this confirm about the lawns?
\qquad
\qquad

Reflect

1. How do the sizes of the pairs of figures help determine if they are congruent?

Explain 1 Determining if Figures are Congruent

Example 1 Use the definition of congruence to decide whether the two figures are congruent. Explain your answer.
(A)

The two figures appear to be the same size and shape, so look for a rigid transformation that will map one to the other.

You can map CDEF onto JKLM by reflecting CDEF over the y-axis. This reflection is a rigid motion that maps CDEF to JKLM, so the two figures are congruent.

The coordinate notation for the reflection is $(x, y) \rightarrow(-x, y)$.
(B)

The two figures appear to be the same/different.
You can map $\triangle A B C$ to $\triangle X Y Z$
by \qquad
This is/is not a rigid motion that maps $\triangle A B C$ to $\triangle X Y Z$, so the two figures are/are not congruent.

The coordinate notation for the rotation is \qquad

Your Turn

Use the definition of congruence to decide whether the two figures are congruent. Explain your answer.
2.

3.

Explain 2 Finding a Sequence of Rigid Motions

The definition of congruence tells you that when two figures are known to be congruent, there must be some sequence of rigid motions that maps one to the other.

Example 2 The figures shown are congruent. Find a sequence of rigid motions that maps one figure to the other. Give coordinate notation for the transformations you use.
(A) $\triangle A B C \cong \triangle P Q R$
(B) $A B C D \cong J K L M$

Map $\triangle A B C$ to $\triangle P Q R$ with a rotation of 180° around the origin, followed by a horizontal translation.

Rotation: $(x, y) \rightarrow(-x,-y)$
Translation: $(x, y) \rightarrow(x+1, y)$

Map $A B C D$ to $J K L M$ with a
\qquad
followed by a \qquad .
\qquad $:(x, y) \rightarrow$ \qquad
$\longrightarrow(x, y) \rightarrow$ \qquad

Reflect

4. How is the orientation of the figure affected by a sequence of transformations?

Your Turn

The figures shown are congruent. Find a sequence of rigid motions that maps one figure to the other. Give coordinate notation for the transformations you use.
5. $J K L M \cong W X Y Z$

6. $A B C D E \cong P Q R S T$

Explain 3 Investigating Congruent Segments and Angles

Congruence can refer to parts of figures as well as whole figures. Two angles are congruent if and only if one can be obtained from the other by rigid motions (that is, by a sequence of reflections, translations, and/or rotations.) The same conditions are required for two segments to be congruent to each other.

Example 3 Determine which angles or segments are congruent. Describe transformations that can be used to verify congruence.

$\angle A$ and $\angle C$ are congruent. The transformation is a translation. There is no transformation that maps $\angle B$ to either of the other angles.
(B)

$\overline{A B}$ and \qquad are congruent. A sequence of transformations is a and a translation.

There is no transformation that maps \qquad to either of the other segments.

Your Turn

7. Determine which segments and which angles are congruent. Describe transformations that can be used to show the congruence.

Elaborate

8. Can you say two angles are congruent if they have the same measure but the segments that identify the rays that form the angle are different lengths?
\qquad
\qquad
9. Discussion Can figures have congruent angles but not be congruent figures?
\qquad
\qquad
10. Essential Question Check-In Can you use transformations to prove that two figures are not congruent?
\qquad
\qquad

\uparrow Evaluate: Homework and Practice

Use the definition of congruence to decide whether the two figures are congruent.

- Online Homework
- Hints and Help
- Extra Practice

1.

3.

2.

4.

5.

The figures shown are congruent. Find a sequence of rigid motions that maps one figure to the other. Give coordinate notation for the transformations you use.
6. $R S T U \cong W X Y Z$

7. $\triangle A B C \cong \triangle D E F$

9. $\triangle C D E \cong \triangle W X Y$

Determine which of the angles are congruent. Which transformations can be used to verify the congruence?

11.

Determine which of the segments are congruent. Which transformations can be used to verify the congruence?
12.

13.

Use the definition of congruence to decide whether the two figures are congruent. Explain your answer. Give coordinate notation for the transformations you use.
14.

15.

17.

The figures shown are congruent. Find a sequence of transformations for the indicated mapping. Give coordinate notation for the transformations you use.
18. Map PQRST to DEFGH.

19. Map $W X Y Z$ to JKLM.

20. Map $P Q R S T U$ to $A B C D E F$.

21. Map $\triangle D E F$ to $\triangle K L M$.

22. Determine whether each pair of angles is congruent or not congruent. Select the correct answer for each lettered part.
a. $\angle A$ and $\angle B$
b. $\angle A$ and $\angle C$
c. $\angle B$ and $\angle C$

CongruentNot congruent
d. $\angle B$ and $\angle D$

CongruentNot congruent
e. $\angle C$ and $\angle D$

CongruentNot congruentCongruentNot congruent

23. If $A B C D$ and $W X Y Z$ are congruent, then $A B C D$ can be mapped to $W X Y Z$ using a rotation and a translation. Determine whether the statement is true or false. Then explain your reasoning.

24. Which segments are congruent? Which are not congruent? Explain.

26. The figures shown are congruent. Find a sequence of transformations that will map $C D E F G$ to QRSTU. Give coordinate notation for the transformations you use.

25. Which angles are congruent? Which are not congruent? Explain.

27. The figures shown are congruent. Find a sequence of transformations that will map $\triangle L M N$ to $\triangle X Y Z$. Give coordinate notation for the transformations you use.

28. Which sequence of transformations does not map a figure onto a congruent figure? Explain.
A. Rotation of 180° about the origin, reflection across the x-axis, horizontal translation $(x, y) \rightarrow(x+4, y)$
B. Reflection across the y-axis, combined translation $(x, y) \rightarrow(x-5, y+2)$
C. Rotation of 180° about the origin, reflection across the y-axis, dilation $(x, y) \rightarrow(2 x, 2 y)$
D. Counterclockwise rotation of 90° about the origin, reflection across the y-axis, combined translation $(x, y) \rightarrow(x-11, y-12)$
29. The figures shown are congruent. Find a sequence of transformations that will map DEFGH to VWXYZ. Give coordinate notation for the transformations you use.

	$8{ }^{4}$		
	Z F Y		x
	-4 0	4	8
	W,		
	\downarrow		

30. How can you prove that two arrows in the recycling symbol are congruent to each other?

31. The city of St. Louis was settled by the French in the mid 1700 s and joined the United States in 1803 as part of the Louisiana Purchase. The city flag reflects its French history by featuring the fleur-de-lis. How can you prove that the left and right petals are congruent to each other?

32. Draw Conclusions Two students are trying to show that the two figures are congruent. The first student decides to map CDEFG to PQRST using a rotation of 180° around the origin, followed by the translation $(x, y) \rightarrow(x, y+6)$. The second student believes the correct transformations are a reflection across the y-axis, followed by the vertical translation $(x, y) \rightarrow(x, y-2)$. Are both students correct, is only one student correct, or is neither student correct?

33. Justify Reasoning Two students are trying to show that the two figures are congruent. The first student decides to map DEFG to RSTU using a rotation of 180° about the origin, followed by the vertical translation $(x, y) \rightarrow(x, y+4)$. The second student uses a reflection across the x-axis, followed by the vertical translation $(x, y) \rightarrow(x, y+4)$, followed by a reflection across the y-axis. Are both students correct, is only one student correct, or is neither student correct?

H.O.T. Focus on Higher Order Thinking

34. Look for a Pattern Assume the pattern of congruent squares shown in the figure continues forever.

Write rules for rigid motions that map square 0 onto square 1 , square 0 onto square 2 , and square 0 onto square 3 .

Write a rule for a rigid motion that maps square 0 onto square n.

35. Analyze Relationships Suppose you know that $\triangle A B C$ is congruent to $\triangle D E F$ and that $\triangle D E F$ is congruent to $\triangle G H J$. Can you conclude that $\triangle A B C$ is congruent to $\triangle G H)$? Explain.
36. Communicate Mathematical Ideas Ella plotted the points $A(0,0), B(4,0)$, and $C(0,4)$. Then she drew $\overline{A B}$ and $\overline{A C}$. Give two different arguments to explain why the segments are congruent.

Lesson Performance Task

The illustration shows how nine congruent shapes can be fitted together to form a larger shape. Each of the shapes can be formed from Shape \#1 through a combination of translations, reflections, and/or rotations.

Describe how each of Shapes 2-9 can be formed from Shape \#1 through a combination of translations, reflections, and/or rotations. Then design a figure like this one, using at least eight congruent shapes. Number the shapes. Then describe how each of them can be formed from Shape \#1 through a combination of translations, reflections, and/or rotations.
\qquad

18.3 Corresponding Parts of Congruent Figures Are Congruent

Explore Exploring Congruence of Parts of Transformed Figures

You will investigate some conclusions you can make when you know that two figures are congruent.
(A) Fold a sheet of paper in half. Use a straightedge to draw a triangle on the folded sheet. Then cut out the triangle, cutting through both layers of paper to produce two congruent triangles. Label them $\triangle A B C$ and $\triangle D E F$, as shown.

(B) Place the triangles next to each other on a desktop. Since the triangles are congruent, there must be a sequence of rigid motions that maps $\triangle A B C$ to $\triangle D E F$. Describe the sequence of rigid motions.
(C) The same sequence of rigid motions that maps $\triangle A B C$ to $\triangle D E F$ maps parts of $\triangle A B C$ to parts of $\triangle D E F$. Complete the following.
$\overline{A B} \rightarrow \square$
$A \rightarrow \square$
$\overline{B C} \rightarrow \square$
$B \rightarrow \square$
$\overline{A C} \rightarrow \square$
$C \rightarrow \square$
(D) What does Step C tell you about the corresponding parts of the two triangles? Why?

Reflect

1. If you know that $\triangle A B C \cong \triangle D E F$, what six congruence statements about segments and angles can you write? Why?
2. Do your findings in this Explore apply to figures other than triangles? For instance, if you know that quadrilaterals JKLM and $P Q R S$ are congruent, can you make any conclusions about corresponding parts? Why or why not?
 parts? Why or why not?

\qquad
\qquad
\qquad

Explain 1 Corresponding Parts of Congruent Figures Are Congruent

The following true statement summarizes what you discovered in the Explore.

Corresponding Parts of Congruent Figures Are Congruent

If two figures are congruent, then corresponding sides are congruent and corresponding angles are congruent.

Example $1 \triangle A B C \cong \triangle D E F$. Find the given side length or angle measure.
(A) $D E$

Step 1 Find the side that corresponds to $\overline{D E}$.
Since $\triangle A B C \cong \triangle D E F, \overline{A B} \cong \overline{D E}$.
Step 2 Find the unknown length.

$$
D E=A B, \text { and } A B=2.6 \mathrm{~cm}
$$ so $D E=2.6 \mathrm{~cm}$.

(B) $\mathrm{m} \angle B$

Step 1 Find the angle that corresponds to $\angle B$.

Since $\triangle A B C \cong \triangle D E F, \angle B \cong \angle \square$.

Step 2 Find the unknown angle measure.

$$
\mathrm{m} \angle B=\mathrm{m} \angle \square, \text { and } \mathrm{m} \angle \square=\square \quad \square^{\circ} \text {, so } \mathrm{m} \angle B=\square .
$$

Reflect

3. Discussion The triangles shown in the figure are congruent. Can you conclude that $\overline{J K} \cong \overline{Q R}$? Explain.

\qquad

Your Turn

$\triangle S T U \cong \triangle V W X$. Find the given side length or angle measure.

4. $S U$
5. $\mathrm{m} \angle S$

Explain 2 Applying the Properties of Congruence

Rigid motions preserve length and angle measure. This means that congruent segments have the same length, so $\overline{U V} \cong \overline{X Y}$ implies $U V=X Y$ and vice versa. In the same way, congruent angles have the same measure, so $\angle J \cong \angle K$ implies $\mathrm{m} \angle J=\mathrm{m} \angle K$ and vice versa.

Properties of Congruence

Reflexive Property of Congruence	$\overline{A B} \cong \overline{A B}$
Symmetric Property of Congruence	If $\overline{A B} \cong \overline{C D}$, then $\overline{C D} \cong \overline{A D}$.
Transitive Property of Congruence	If $\overline{A B} \cong \overline{C D}$ and $\overline{C D} \cong \overline{E F}$, then $\overline{A B} \cong \overline{E F}$.

Example $2 \triangle A B C \cong \triangle D E F$. Find the given side length or angle measure.
(A) $A B$

Since $\triangle A B C \cong \triangle D E F, \overline{A B} \cong \overline{D E}$.
Therefore, $A B=D E$.
Write an equation.

$$
3 x+8=5 x
$$

Subtract $3 x$ from each side.

$$
8=2 x
$$

Divide each side by 2 .

$$
4=x
$$

So, $A B=3 x+8=3(4)+8=12+8=20 \mathrm{in}$.
(B) $m \angle D$

Since $\triangle A B C \cong \triangle D E F, \angle \square \cong \angle D$. Therefore, $\mathrm{m} \angle \square=\mathrm{m} \angle D$.
Write an equation. $5 y+\square=\square+2$
Subtract $5 y$ from each side.

$$
11=\square+2
$$

Subtract 2 from each side.

$$
=\square
$$

So, $\mathrm{m} \angle D=(6 y+2)^{\circ}=(6 \cdot \square+2)^{\circ}=\square^{\circ}$.

Your Turn

Quadrilateral $G H J K \cong$ quadrilateral $L M N P$. Find the given side length or angle measure.

6. $L M$
7. $\mathrm{m} \angle H$

Explain 3 Using Congruent Corresponding Parts in a Proof

Example 3 Write each proof.

(A) Given: $\triangle A B D \cong \triangle A C D$

Prove: D is the midpoint of $\overline{B C}$.

Statements	Reasons
1. $\triangle A B D \cong \triangle A C D$	1. Given
2. $\overline{B D} \cong \overline{C D}$	2. Corresponding parts of congruent figures are congruent.
3. D is the midpoint of $\overline{B C}$.	3. Definition of midpoint.

(B) Given: Quadrilateral $J K L M \cong$ quadrilateral $N P Q R ; \angle J \cong \angle K$

Prove: $\angle J \cong \angle P$

Statements	Reasons
1. Quadrilateral $J K L M \cong$ quadrilateral $N P Q R$	1.
2. $\angle J \cong \angle K$	2.
3. $\angle K \cong \angle P$	3.
4. $\angle J \cong \angle P$	4.

Your Turn

Write each proof.
8. Given: $\triangle S V T \cong \triangle S W T$

Prove: $\overline{S T}$ bisects $\angle V S W$.

9. Given: Quadrilateral $A B C D \cong$ quadrilateral $E F G H$;

$$
\overline{A D} \cong \overline{C D}
$$

Prove: $\overline{A D} \cong \overline{G H}$

Elaborate

10. A student claims that any two congruent triangles must have the same perimeter. Do you agree? Explain.
\qquad
\qquad
11. If $\triangle P Q R$ is a right triangle and $\triangle P Q R \cong \triangle X Y Z$, does $\triangle X Y Z$ have to be a right triangle? Why or why not?
\qquad
\qquad
\qquad
12. Essential Question Check-In Suppose you know that pentagon $A B C D E$ is congruent to pentagon $F G H J K$. How many additional congruence statements can you write using corresponding parts of the pentagons? Explain.

Evaluate: Homework and Practice

1. Danielle finds that she can use a translation and a reflection to make quadrilateral $A B C D$ fit perfectly on top of quadrilateral $W X Y Z$. What

- Online Homework
- Hints and Help
- Extra Practice congruence statements can Danielle write using the sides and angles of the quadrilaterals? Why?

$\triangle D E F \cong \triangle G H J$. Find the given side length or angle measure.

2. $J H$
3. $\mathrm{m} \angle D$
$K L M N \cong P Q R S$. Find the given side length or angle measure.

4. $\mathrm{m} \angle R$
5. $P S$
$\triangle A B C \cong \triangle T U V$. Find the given side length or angle measure.

6. $B C$
7. $\mathrm{m} \angle U$
$D E F G \cong K L M N$. Find the given side length or angle measure.

8. $F G$
9. $\mathrm{m} \angle D$
$\triangle G H J \cong \triangle P Q R$ and $\triangle P Q R \cong \triangle S T U$. Complete the following using a side or angle of $\triangle S T U$. Justify your answers.
10. $\overline{G H} \cong$ \qquad 11. $\angle J \cong$ \qquad
11. $G J=$ \qquad 13. $\mathrm{m} \angle G=$ \qquad

Write each proof.

14. Given: Quadrilateral $P Q T U \cong$ quadrilateral $Q R S T$ Prove: $\overline{Q T}$ bisects $\overline{P R}$.

15. Given: $\triangle A B C \cong \triangle A D C$

Prove: $\overline{A C}$ bisects $\angle B A D$ and $\overline{A C}$ bisects $\angle B C D$.

16. Given: Pentagon $A B C D E \cong$ pentagon $F G H J K ; \angle D \cong \angle E$

Prove: $\angle D \cong \angle K$

$\triangle A B C \cong \triangle D E F$. Find the given side length or angle measure.

17. $\mathrm{m} \angle D$
18. $\mathrm{m} \angle C$
19. The figure shows the dimensions of two city parks, where $\triangle R S T \cong \triangle X Y Z$ and $\overline{Y X} \cong \overline{Y Z}$. A city employee wants to order new fences to surround both parks. What is the total length of the fences required to surround the parks?

20. A tower crane is used to lift steel, concrete, and building materials at construction sites. The figure shows part of the horizontal beam of a tower crane, in which $\triangle A B G \cong \triangle B C H \cong \triangle H G B$

a. Is it possible to determine $\mathrm{m} \angle G B H$? If so, how? If not, why not?
b. A member of the construction crew claims that $\overline{A C}$ is twice as long as $\overline{A B}$. Do you agree? Explain.
21. Multi-Step A company installs triangular pools at hotels. All of the pools are congruent and $\triangle J K L \cong \triangle M N P$ in the figure. What is the perimeter of each pool?

22. Kendall and Ava lay out the course shown below for their radio-controlled trucks. In the figure, $\triangle A B D \cong \triangle C B D$. The trucks travel at a constant speed of 15 feet per second. How long does it take a truck to travel on the course from A to B to C to D ? Round to the nearest tenth of a second.

23. $\triangle M N P \cong \triangle Q R S$. Determine whether each statement about the triangles is true or false. Select the correct answer for each lettered part.

a. $\triangle Q R S$ is isosceles.
\bigcirc TrueFalse
b. $\overline{M P}$ is longer than $\overline{M N}$.TrueFalse
c. $\mathrm{m} \angle P=52^{\circ}$TrueFalse
d. The perimeter of $\triangle Q R S$ is 120 mm .TrueFalse
e. $\angle M \cong \angle Q$
False

H.O.T. Focus on Higher Order Thinking

24. Justify Reasoning Given that $\triangle A B C \cong \triangle D E F, A B=2.7 \mathrm{ft}$, and $A C=3.4 \mathrm{ft}$, is it possible to determine the length of $\overline{E F}$? If so, find the length and justify your steps. If not, explain why not.
25. Explain the Error A student was told that $\triangle G H J \cong \triangle R S T$ and was asked to find $G H$. The student's work is shown below. Explain the error and find the correct answer.

Student's Work

26. Critical Thinking In $\triangle A B C, \mathrm{~m} \angle A=55^{\circ}, \mathrm{m} \angle B=50^{\circ}$, and $\mathrm{m} \angle C=75^{\circ}$. In $\triangle D E F$, $\mathrm{m} \angle E=50^{\circ}$, and $\mathrm{m} \angle F=65^{\circ}$. Is it possible for the triangles to be congruent? Explain.
27. Analyze Relationships $\triangle P Q R \cong \triangle S Q R$ and $\overline{R S} \cong \overline{R T}$. A student said that point R appears to be the midpoint of $\overline{P T}$. Is it possible to prove this? If so, write the proof. If not, explain why not.

Lesson Performance Task

The illustration shows a "Yankee Puzzle" quilt.

a. Use the idea of congruent shapes to describe the design of the quilt.
b. Explain how the triangle with base $\overline{A B}$ can be transformed to the position of the triangle with base $\overline{C D}$.
c. Explain how you know that $C D=A B$.

